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at the thermal noise limit
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We describe a sensitive torque detector, based on a silicon single-crystal double-paddle oscillator
(DPO). The high Q-factor (~10° at room temperature and in vacuum) makes DPOs well suited for
the detection of weak forces. The limiting sensitivity of a sensor is given by Brownian (thermal)
noise if all external disturbances are eliminated. In this case, the minimum detectable force can be
decreased by measuring over a time significantly longer than the oscillator’s relaxation time. We
demonstrate operation in this regime, with integration times of up to 14 h. A resulting torque
sensitivity of 2 X 1078 N m is reached. Tests are performed to show that the sensor is only affected
by thermal noise. The present sensor is well suited for measurements of extremely weak forces, e.g.,
of gravitational attraction between laboratory masses. © 2007 American Institute of Physics.
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I. INTRODUCTION

One of the first measurements of the Brownian motion
of a mechanical oscillator goes back to Gerlach in 1927, who
studied the torsional Brownian noise of a small mirror at-
tached to a very fine wire.! A theoretical analysis of this
phenomenon was provided by Uhlenbeck and Goudsmith in
19297 A deeper understanding of the origin of Brownian
noise was developed by Nyquist, who pointed out the exis-
tence of a connection between stochastic motion and the in-
ternal mechanical loss of the material.® A further generaliza-
tion of this concept was given by Callen and Welton, through
the fluctuation-dissipation theorem.*

In the last decade the relevance of mechanical oscillators
for precision measurements of weak forces has steadily
grown.5 The detection of the Casimir force,® 3D microscopy
with subnanometer resolution,7 and attogram mass detection®
are some of the most recent examples of the results achieved
by the use of mechanical oscillators in high-precision experi-
ments. Particularly challenging applications of ultrasensitive
force sensors are tests of Newton’s law at small distance’"*
and optical measurements of small displacements.
many cases, Brownian noise of the detector represents the
desirable ultimate limit to their sensitivity. A review of the
measurement and data analysis strategies, developed to im-
prove the sensitivity of these detectors, can be found in the
work by Gillies and Ritter."”

In the present work we report on a torque sensor based
on a single-crystal silicon oscillator, the double-paddle oscil-
lator (DPO). This sensor type, originally developed to mea-
sure internal friction of thin ﬁlms,lg’19 is very well suited to
the measurement of weak forces because of its high Q-factor.
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Under vacuum operation and at room temperature, it is pos-
sible to detect and characterize its Brownian motion, which
is due to the scattering of phonons.

The article is structured as follows. We briefly review the
theory of Brownian motion for a torsional oscillator, relevant
for comparing the measured force sensitivity with the ther-
mal noise limit. Based on this theory we discuss the mea-
surement procedure for detection of a weak time-harmonic
force in the presence of stochastic noise. Then, we review the
main properties of the microfabricated DPOs and describe
the experimental apparatus. The experimental results are
given in the last section, which also describes tests that dem-
onstrate that the measured noise is consistent with Brownian
noise.

Il. THEORY OF BROWNIAN NOISE

A simple model can describe the angular fluctuations of
a torsional oscillator due to Brownian noise and is suitable
for characterizing the sensitivity of a variety of precision
experiments, e.g., weak force sensors and gravitational wave
detection.”’

The equation of motion of a harmonic torsional oscilla-
tor driven by Brownian noise is

19+ BY+DI=M(©), 1)

where [ is the moment of inertia around the torsion axis, U is
the angular deflection of the oscillator, 8 is the damping
coefficient, D is the spring constant, and M is a fluctuating
torque. Equation (1) is a Langevin equation for a simple
harmonic oscillator of frequency w,2e=D/I. We assume that
M(7) has the following properties:

(1) zero mean value;
(i)  its variance is a constant in time: M>(¢)=const; and
(iii)  its values at two different times are uncorrelated.
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The angular fluctuations of an oscillator excited by such
a stochastic torque do not obey the statistics of pure random
noise. This is a consequence of the correlations introduced
by the oscillator. If the oscillator’s deflection at time f is
J(ty), the probability distribution of its deflection at a later
time 7 is given by

PLI(0)]9(10)] =

(1) ; (a(t) ﬁ(ro)e-f”)

P -2\ P (1 -2
(1) + ﬁﬁ(t)e_t/7:|
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where 7=21/ is the mechanical relaxation time of the os-
cillator, 92 is the mean square deflection, and [ is the modi-
fied Bessel function.

If the oscillator is excited by an external harmonic
torque at the oscillator’s resonance frequency, I’
=I"; sin(wg?), the minimum detectable torque amplitude can
be derived using Eq. (2) and is given by*' >

kBTI kBTIC()R
r min = DV A AL 3
(o) ™ ar TN 2041 )

if the measurement time At is smaller than the oscillator
relaxation time 7. Here, the Q-factor has been introduced
through 7=20/wg. The improvement of torque sensitivity
with increasing measurement time can easily be pictured.
During the measurement time the response of the oscillator
to the external force increases steadily due to the phenom-
enon of resonance, whereas the response due to Brownian
noise fluctuates. This is the regime in which the most sensi-
tive torsion pendula opelrate,23 whose relaxation times are of
the order 10°—~10° s. A detailed analysis of the sensitivity of
torsion pendula can be found in the book by Chen and
Cook.?*

Increasing the measurement time A beyond 7 does not
lead directly to an improved torque sensitivity unless an ap-
propriate data analysis is performed.S’24 Following Uhlen-
beck and Goudsmit,” it is necessary to develop the measured
angular displacement in a Fourier series, 9(f)=2,9(),
where the index k=0, ...,% denotes the frequency harmonics
wy=2mk/Ar. We first consider the oscillator motion in the
absence of external torque. The term k' of the series at the
oscillator’s resonance frequency is the one of interest. The
time average of (9 ())> depends on the measurement time
as

_2= 4kBTQ
K Iszt '

(4)

Both quadrature amplitude of ¥ then also average to zero,
as (Ar)™"2 for At>4Q/ wi.

A similar result can be obtained by applying Nyquist’s
theorem.”® The potential energy of the oscillator, in the ab-
sence of external excitation, can be calculated from Eq. (4)
and, as shown in Ref. 2, is constant and independent of the
observation time as expected from the equipartition theorem.

The signal-to-noise ratio of a measurement of a resonant
torque of amplitude I’ is defined as the ratio between the
corresponding steady-state oscillator amplitude and the
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Brownian noise amplitude given by Eq. (4). Setting this ratio
equal to unity yields the minimum detectable torque in the
case A>T,

_ 4kBT1(UR
(FO)min - \l QAZ . (5)

Thus, the minimum detectable torque decreases with the
square root of the measurement duration. The validity of this
analysis is limited to the case of noise with white spectrum.
An example of weak (gravitational) force detection using
detection of the oscillator amplitude at the resonance fre-
quency is given in Ref. 9.

It is interesting to consider the statistical properties of
the oscillator’s response. In the following analysis we as-
sume that the deflection of the oscillator is measured by a
lock-in technique where the local oscillator is tuned to the
oscillator’s resonance frequency. This yields the slowly vary-
ing amplitude r(¢) and phase iAz) of the oscillator’s deflec-
tion 9(r)=r(t)cos(wgt—i(r)). The quadrature amplitudes
X(t)=r(r)cos ¥t) and Y(r)=r(¢)sin (t) can then be calcu-
lated. In steady state, the probability distribution function for
these two quantities is given by W(X,Y)=W(X)W(Y),
where”

1o \12 o
W(X):( £ ) expl - —%x?]. (6)
27kgT 2kgT
From Eq. (6) it follows that both quadratures have vanishing

mean value, while their variance is equal to kBT/IwIZQ, as
expected from the equipartition theorem.

lll. EXPERIMENTAL RESULTS
A. Description of apparatus

Single-crystal silicon has low internal friction and a
large knowledge base exists concerning its fabrication into
appropriate geometries. These two properties make it the fa-
vorite material for mechanical sensors in many research
fields. Our oscillator was developed for an experiment to
detect gravity at short (<1 mm) distances.'* The design we
used was developed by Kleiman and co-workers'® and later
improved by Pohl and co-workers,"” who used it for charac-
terizing the elastic properties of thin films. The oscillator is
shown in Fig. 1. It was fabricated from a 300 um thick,
float-zone refined, double-side polished, (100)-oriented,
p-doped silicon wafer with a room-temperature-specific re-
sistance larger than 10 k() cm. The fabrication procedure
was developed in our group and is based on wet etching.26
The sensor consists of two masses, head and wings, con-
nected by a torsion rod, the neck. The wings are themselves
connected to a base (foot) by a thinner rod, the leg. The
vibrational modes of this structure have been fully character-
ized in the range between 0.1 and 10 kHz." In the present
work a torsional mode, denoted by AS2 in the literature, was
used. In this mode the head oscillates, twisting the neck,
while the wings’ motion is out of the oscillator’s plane
around an axis orthogonal to the neck length. The resonance
frequency v; of the AS2 mode of the oscillator was g
=(5921.303+0.003) Hz and its quality factor was Q
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FIG. 1. The single-crystal silicon double-paddle oscillator used in this work.
The thickness is approximately 300 wm.

=(1.86+0.02) X 10°, which corresponds to a relaxation time
7=10 s. The full width of the resonance curve at half-power
was Av=1,/(0=0.033 Hz.

In our experiment the oscillator’s base was glued on an
aluminum holder, which contained a heating element, a tem-
perature sensor, and a set of distance detectors. The DPO
holder rested on a passive vibration isolation stage made of
alternating steel disks and silicon gel dampers. The use of
this vibration isolation system allowed us to strongly reduce
the influence of external disturbances on the oscillator, e.g.,
seismic noise. A piezoceramic actuator, mounted on the low-
est stage of the vibration isolation system, was used for ex-
citation and permitted diagnostics (determination of reso-
nance frequency and Q-factor) and sensitivity studies. The
apparatus was operated in a vacuum chamber at a pressure of
about 1077 mbar. The pressure in the vacuum vessel was
constantly monitored during the complete duration of the
measurement, since its variation could have induced a
change in the Q-factor of the DPO.

The detection of the angular deflection of the DPO’s
head was performed by an optical lever. It consisted of a
He-Ne laser beam that was reflected by the oscillator head
onto a position-sensitive (split) photodiode. The resolution of
this detection system was about 3 X 107! rad in a 1 Hz mea-
surement bandwidth. As shown in our previous work,”® the
stabilization of the DPO temperature is necessary in order to
minimize oscillator frequency drift and thus maximize the
effects of an external constant-frequency excitation. Using a
PID controller, we reduced the temperature instability to the
level of 0.08 K over several hours, which corresponds to a
resonance frequency instability of about 0.01 Hz.

The measurements analyzed below were taken in several
consecutive runs for a total of 3.4 X 10° s. The detection of
the oscillator’s angular displacement was performed by a
digital dual-phase lock-in amplifier, with a local oscillator
frequency set to allow measurement of the quadratures X(r)
and Y(¢). The bandwidth of the lock-in amplifier was set
equal to 0.8 Hz (corresponding to a lock-in time constant of
7,=0.3 s) and the data were acquired at a rate of 1 Hz. A run
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FIG. 2. Histograms of the oscillator’s X angular displacement quadrature
measured at resonance and in the absence of external excitation for two
different measurement durations: (a) 2.5X10%s and (b) 1.7X 10’ s. The
continuous curves represent Gaussian fits. (c) and (d) show the fit residuals.

was divided into blocks where each block consisted of the
following steps. First, the oscillator response was detected
during 600 s, while an external excitation was applied. The
external excitation was then switched off and, after waiting
100 s, necessary for the oscillator to reach equilibrium, a
measurement without excitation was taken over another 600
s. Then, the (slowly drifting) resonance frequency was deter-
mined by exciting the DPO with a fixed voltage at a few
different frequencies and fitting the measured amplitude to a
Lorentz curve. Once this procedure was completed, the reso-
nant excitation was modified, if necessary, and the next block
started.

In order to determine the influence of the detection sys-
tem noise, the quadratures X(7) and Y(z) were also measured
in the absence of external excitation and with the local os-
cillator frequency tuned 1 Hz below the DPO resonance.
These measurements were performed in a single run with a
duration of 2 X 10° s.

B. Characterization of thermal noise

In order to characterize the measured oscillator deflec-
tion noise, we first analyzed the data taken in the absence of
external excitation. These data were considered as taken all
in a single measurement without dead time between the
single runs.”’ Figure 2 displays the statistics of the X quadra-
ture for two different acquisition times, 2500 s and 1.7
X 10° s. In both cases the experimental data were fitted to
Eq. (6), with the exponents as fit parameters. The plots of the
fit residuals show how the agreement with theory improves
for increasing measurement time, as expected. Also, the
noise of the detection system was found to be approximately
50 times smaller than the thermal noise of the DPO, using
the procedure described above. Assuming the statistics to be
indeed due to Brownian noise, from the fits it is possible to
obtain the torsion constant of the oscillator, D
=(8.04+0.06) X 107> N m.

The torsion constant can also be calculated approxi-
mately from the oscillator’s dimensions and is given by28
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FIG. 3. The mean values of the oscillator’s X quadrature, measured with and
without a small external mechanical excitation (4.3 X 107'® N m), as a func-
tion of integration time. Each sample corresponds to 0.3 s measurement
time. The shown error bars correspond to +3 standard deviations of the
mean values of the individual lock-in readings.

3
D= g%c, (7)

where ¢ is a parameter depending on the geometry of the
oscillator, equal to 0.25 in our case, a=6.85 mm is the full
width of the oscillator’s head, »#=0.3 mm is the thickness,
and ¢=1.09 mm is the neck width. The calculated torsion
constant is D=7.7X 102 N m, in good agreement with the
value obtained from the noise data. This confirms that the
observed noise is Brownian noise.

C. Detection of weak torques

In order to determine the torque sensitivity of the sensor,
a small harmonic excitation was applied to the oscillator, as
previously described. This was implemented by applying a
small ac voltage at the sensor’s resonance frequency to the
piezoceramic actuator mounted on the vibration isolation
system. The excitation voltage was generated by a frequency
synthesizer phase-locked to the local oscillator used for the
lock-in detection. In order to determine the correspondence
between voltage and torque, the excitation was made large
enough to produce an easily detectable deflection, which was
converted into a torque value by multiplying it with the ex-
perimentally determined spring constant. In doing so, we
made sure that the piezo actuator’s response was linear in the
range used. In the following we used an external excitation
corresponding to a torque I'y=4.3 X 107'"® N m and its phase
was chosen equal to the local oscillator phase. According to
the theory of Sec. II, this torque should be detectable for
integration times exceeding approximately 1 X 10*s.

Figure 3 shows the mean values of the X quadrature as a
function of the averaging time. Note that the mean of the
lock-in measurements is the time average of the Fourier am-
plitude of X at the DPO’s resonance frequency. In calculating
these mean values we assumed that the dead times between
successive runs do not introduce any deviation, in analogy to
the case illustrated in the previous section. Since each
sample was taken over 0.3 s, the “true” total integration time
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corresponds to 5.1 X 10* s. The shown error bars are equal to
+3 standard deviations of the mean value, calculated from
the individual data points. The mean quadrature amplitude
corresponds to, after subtracting the detection system noise,
an excitation torque of 4.4 X 107" N m, in good agreement
with the expected level.

For comparison, the figure also displays the mean X
quadrature in the absence of mechanical excitation. As can
be seen, the presence of an external excitation is masked by
noise for averaging times shorter than 7 X 10° s, whereas it is
visible for longer averaging, in accordance with the above
estimate. Statistical testing was done to determine if the pres-
ence of the external signal resulted in a significant difference
of the two sets of data. The result of a t-test for 2.5 10*
samples indicated that the mean quadratures are statistically
different with a significance level of 95%.

From the experimental data, we can estimate the mini-
mum detectable torque as follows. The full data set is di-
vided into 20 equally long subsets. The standard deviation of
the subset mean values may be identified with the thermal
amplitude noise, 1.3X 107'? rad. As a criterion for the mini-
mum detectable torque we consider the torque equivalent to
twice this deflection noise value, 1.3 X 10~'® N m. This holds
for an integration time of 2.5X 10 s. Extrapolation to an
integration time of 5.1 X 10*s (the whole data set length),
yields 2.8 X 107! N m. The theoretical VahLe for this quan-
tity, from Eq. (5) corrected by a factor 1/+2 for the case of
detection of a single quadrature, is 1.3 107!8 N m, a factor
of 5 larger than the extrapolated experimental value. The
origin of this difference is unclear.

IV. SUMMARY

We have shown that it is possible to detect weak torques
on the order of few 107" Nm by using a macroscopic
single-crystal oscillator (sensitive area 12.5 mm?), which can
easily be fabricated in clean-room facilities. Moreover, we
have experimentally reached the thermal-noise limited sensi-
tivity of the detector. In particular, we showed that the mea-
sured noise level is in general agreement with Brownian
noise theory. Thus, our apparatus represents a suitable ap-
proach for the detection of gravity-like new forces at short
distances. Moreover, the sensor could also be employed for
the detection of classical, e.g., magnetic forces.
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