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Abstract The systematic shifts of the transition frequencies

in the molecular hydrogen ions are of relevance to ultra-high-

resolution radio-frequency, microwave and optical spec-

troscopy of these systems, performed in ion traps. We

develop the ab initio description of the interaction of the

electric quadrupole moment of this class of molecules with

the static electric field gradients present in ion traps. In good

approximation, it is described in terms of an effective per-

turbation Hamiltonian. An approximate treatment is then

performed in the Born–Oppenheimer approximation. We

give an expression of the electric quadrupole coupling

parameter valid for all hydrogen molecular ion species and

evaluate it for a large number of states of H2
?, HD?, and D2

?.

The systematic shifts can be evaluated as simple expectation

values of the perturbation Hamiltonian. Results on radio-

frequency, one-photon electric dipole (E1), and two-photon

E1 transitions between hyperfine states in HD? are reported.

For two-photon E1 transitions between rotationless states, the

shifts vanish. For a large subset of rovibrational one-photon

transitions, the absolute values of the quadrupole shifts range

from 0.3 to 10 Hz for an electric field gradient of 108 V/m2.

We point out an experimental procedure for determining the

quadrupole shift which will allow reducing its contribution to

the uncertainty of unperturbed rovibrational transition fre-

quencies to the 1 9 10-15 fractional level and, for selected

transitions, even below it. The combined contributions of

black-body radiation, Zeeman, Stark and quadrupole effects

are considered for a large set of transitions, and it is estimated

that the total transition frequency uncertainty of selected

transitions can be reduced below the 1 9 10-15 level.

1 Introduction

One of the fascinating aspects of the ion trap invented by W.

Paul and its later variants is the suitability for trapping a

wide variety of particles. While atomic ions are the most

frequently studied particle types, today, cold molecular ions

are being studied in an increasing number of laboratories

world-wide. The molecular ion most intensely studied so far

from a spectroscopic point of view is the molecular

hydrogen ion HD?, for which significant progress has been

made in the last decade, both on the experimental [1, 2] and

on the ab-initio theory front (see Ref. [3] and references

therein). Combined studies of HD? and of the isotopologue

molecules (H2
? [4], HT? [5], D2

?, etc.) may in the near future

lead to the determination of several fundamental physical

constants, such as the ratios of proton, deuteron, and triton

mass relative to the electron mass, and the Rydberg energy

[1, 6–8] with potentially competitive accuracy and with a

different experimental approach than in atomic laser spec-

troscopy and Penning trap spectroscopy. A first step in this

direction has been performed with two laser-spectroscopic

measurements on HD? [1, 2], from which the ratio of the

electron mass to the reduced nuclear mass can be inferred

with a fractional experimental uncertainty of approximately

4 and 2 parts in 109, respectively.

Moreover, the molecular hydrogen ions may be suited to

investigate the question whether the mentioned dimen-

sionless fundamental constants are independent of time [7]

and of location in space, a postulate made by the principle

of local position invariance of General Relativity.
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These possibilities are only feasible if the experimental

uncertainty in the measurement of transition frequencies

can be reduced to a level necessary for the particular

application. For example, in order to make competitive

determinations of the fundamental constants, (currently)

uncertainties of 1 9 10-10 or less are desirable, while for

the investigation of their time-independence, 1 9 10-16 or

less is desirable. A series of systematic effects needs to be

carefully taken into account, including the effects of the

external electric and magnetic fields in the volume occu-

pied by the molecular ions. The Zeeman shift of the tran-

sition frequency induced by the weak magnetic fields

usually present in experiments was thoroughly investigated

in [9–11]. Various aspects of the Stark effect of the HD?

molecule have been studied in [12, 13], and recently in [14,

15].

In the present paper, we determine theoretically the energy

shifts caused by the interaction of the permanent electric

quadrupole moment of the molecular ion with the inhomo-

geneities of the electric field of the ion trap. For atomic ions

used in optical clocks, this is a well-known systematic effect,

but for molecular ions, this effect has not been treated before

for any molecule, to the best of our knowledge.

Concerning related work, we mention that the electric

quadrupole transitions of the molecular hydrogen ions have

been of some theoretical interest. The transition matrix

elements for H2
? have first been treated by Bates and Poots

[16] and later more extensively in Refs. [17–19]; the value

of the permanent quadrupole moment in the vibrational

ground state v = 0 is reported in Refs. [16, 17, 20–21]. To

our knowledge, there is only a single calculation con-

cerning HD?, namely of its permanent quadrupole moment

in the level v = 0, in Ref. [22]. Recently, the quadrupole

transition moments for D2
? have been reported [23].

After developing the general theory in Sect. 2, as in a

previous work [15], the numerical calculations are performed

in the Born–Oppenheimer approach, introduced in Sect. 3,

which provides rovibrational energy levels and matrix ele-

ments with fractional error of approximately 10-3, but is

entirely sufficient for the evaluation of the electric quadrupole

effect in ion traps. This will be justified a posteriori by the

small size of the calculated corrections. The detailed study of a

large number of transitions in HD? is given in Sect. 4. The

discussion (Sect. 5) shows that Zeeman, electric quadrupole,

and Stark shifts can be controlled to a sufficient level even in

spectroscopy aiming for high accuracy.

2 Electric quadrupole shift in three-particle bound

systems

In this section, we derive the general expressions for the

quadrupole interaction effect in a three-body bound system.

We use the Jacobi coordinate vectors of the three-body

system, RC, R and r, which are related to the individual

particle position vectors Rk, k = 1, 2, 3 by means of

RC ¼
X3

k¼1

mk

mt

Rk;

R ¼ R2 � R1;

r ¼ R3 �
m1

m12

R1 �
m2

m12

R2;

mkk0 ¼ mk þ mk0 ;

mk;k0 ¼
mkmk0

mkk0
;

mt ¼
X

k

mk

ð1Þ

where mk are the masses of the particles. In the HD? ion,

k = 1, 2, 3 labels the deuteron, the proton, and the

electron, respectively. Note that r is defined as the radius

vector of the electron reckoned from the center of mass of

the two nuclei. In terms of the Jacobi vectors, the non-

relativistic Hamiltonian HNR splits into the sum of the free

Hamiltonian HC of the system ‘‘as a whole’’ and the

Hamiltonian H of the internal degrees of freedom:

HNR ¼ HC þ H;HC ¼
P2

C

2mt

; ð2Þ

H ¼ P2

2m1;2
þ p2

2m3;12

þ VðR; rÞ; ð3Þ

VðR; rÞ ¼
X

k\k0

ZkZk0e
2

jRk � Rk0 j
; ð4Þ

where PC, P and p are the momenta conjugate to

RC, R and r, respectively, and Zk are the particle charges in

units of e.

In an external electric potential U, the non-relativistic

Hamiltonian HNR acquires an additional term: HNR;ext ¼
HNR þ DH with

DH ¼
X3

k¼1

eZkUðRkÞ ð5Þ

being the electrostatic energy of the particles. For external

fields that vary slowly in space and time, DH is

approximated with the truncated multipole expansion

DH ¼ DH0 þ DHd þ DHQ;

DH0 ¼ ðe
X

k

ZkÞUðRCÞ;

DHd ¼ �dC � EðRCÞ;

DHQ ¼ �
1

3
HC � QðRCÞ;

ð6Þ

where dC is the electric dipole moment of the system with

respect to RC; dC ¼
P

k eZkrk; rk ¼ Rk � RC;HC is the
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irreducible tensor of rank 2 of the quadrupole moment with

Cartesian components

ðHCÞij ¼ ð3=2Þ
X

k

eZkðrkirkj � dijr
2
k=3Þ; ð7Þ

EðRCÞ ¼ �rUðxÞjx¼RC
ð8Þ

is the external electric field at the center point, and

QðRCÞij ¼ �ðo
2=oxioxjÞUðxÞjx¼RC

: ð9Þ

DH0, together with HC, are dropped because of being

related to the degrees of freedom of the 3-body system ‘‘as

a whole’’. Different aspects of the second-order perturba-

tion contribution of the dipole term have been evaluated in

[12, 14, 15]. In what follows, we focus our attention on the

contribution of the quadrupole interaction term DHQ in first

order of perturbation theory.

The Cartesian components ðHCÞij in terms of the

Cartesian components of the vectors R and r (in the center-

of-mass frame RC = 0) are

ðHCÞij ¼
3

2
e a0 RiRj �

dij

3
R2

� ��

þa1

Rirj þ riRj

2
� dij

3
R � r

� �
� a2 rirj �

dij

3
r2

� ��
;

ð10Þ

a0 ¼ ðm2
1 þ m2

2Þ=m2
12; a1 ¼ 2ðm2 � m1Þm3=ðm12mtÞ;

a2 ¼ ðm2
12 � 2m2

3Þ=m2
t : ð11Þ

Note the factor 3/2 in the definition of HC that is not present

in the analogous expressions in Refs. [16, 22]. In evaluating

the matrix elements of HC in the angular momentum

representation, similar to Refs. [24, 25] we use the

expansion of the non-relativistic three-body wave function

of the bound state with the orbital momentum quantum

number L, the projection of L on the space-fixed z-axis

equal to M, the vibrational quantum number v and the parity

k in the basis of the symmetrized Wigner functions DkL
Mm,

wkvLMðR; rÞ ¼ hR; rjkvLMi

¼
XL

m¼0

ukvL
m ðR; r; cÞDkL

MmðU; h;uÞ; ð12Þ

where c is the angle between the vectors R and r:

cosc = R�r/(Rr), while U; h and u are the Euler angles of

the rotation that transforms the space-fixed into the body-

fixed reference frame with z-axis along R and r in the xOz

plane.

The amplitudes um
kvL(R, r, c) are normalized by the

condition
R

dRR2
R

drr2
R

dc sin c
P

mðukvL
m ðR; r; cÞÞ

2 ¼ 1.

The normalized symmetrized Wigner functions

DkL
MmðU; h;uÞ are linear combinations with definite parity

of the complex conjugated standard Wigner functions:

DkL
MmðU; h;uÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Lþ 1

16p2ð1þ d0mÞ

s

ð�1ÞmDL�
MmðU; h;uÞ

�

þ kð�1ÞLDL�
M�mðU; h;uÞ

�
: ð13Þ

Next, the cyclic components of the quadrupole moment ~HC

(labeled with the tilde to distinguish from the Cartesian

components) are put in the form of a sum of terms with

factorized dependence on the sets of angular and radial

variables:

~HC ¼ e

�
a0R2X0 þ a1Rr

�
d1

00ðcÞX0 �
ffiffiffi
3
p

2
d1

10ðcÞX1
�

� a2r2
�
d2

00ðcÞX0 þ d2
10ðcÞX1 þ d2

20ðcÞX2
��
; ð14Þ

where dmM
L (c) are the ‘‘small’’ Wigner d-matrices given in

[26]. The (Xi)0, i = 0, 1, 2 are the 0th cyclic components

of irreducible tensor operators Xi of rank 2 acting on the

angular variables:

ðX0Þ0 ¼
3

2
cos2 h� 1

2
; ðX1Þ0 ¼

ffiffiffi
6
p

sin h cos h cos u;

ðX2Þ0 ¼
ffiffiffi
3

2

r
sin2 h cos 2u: ð15Þ

The reduced matrix elements of Xi in the angular basis of

Eq. (13) have the form:

hk0m0L0jjX0jjkmLi ¼ NðCL0m0

Lm;20 þ rCL0m0

L�m;20Þ;
hk0m0L0jjX1jjkmLi ¼ NðCL0m0

Lm;2�1 � CL0m0

Lm;21

þ rðCL0m0

L�m;2�1 � CL0m0

L�m;21ÞÞ;
hk0m0L0jjX2jjkmLi ¼ NðCL0m0

Lm;2�2 þ CL0m0

Lm;22

þ rðCL0m0

L�m;2�2 þ CL0m0

L�m;22ÞÞ; ð16Þ

where N ¼ dkk0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2Lþ 1Þ=ðð1þ d0mÞð1þ d0m0 ÞÞ

p
; r ¼

kð�1ÞmþL
, and Caa,bb

ee :hee|aa, bbi are the Clebsch–

Gordan coefficients.

Thus, the matrix elements of DHQ in the basis Eq. (12)

become

hkv0L0M0jDHQjkvLMi ¼ � 1

3

� X2

q¼�2

~QqðRCÞCL0M0

LM;2q

�

� ð2L0 þ 1Þ�1=2hkv0L0jj ~HCjjkvLi;
ð17Þ

hkv0L0jj ~HCjjkvLi ¼ e
X

m0m

�
hkm0L0jjX0jjkmLi

� a0I
ð00Þm0m
k;v0L0;vL þ a1I

ð01Þm0m
k;v0L0;vL � a2I

ð02Þm0m
k;v0L0;vL

� �

�hkm0L0jjX1jjkmLi
ffiffiffi
3
p

2
a1I
ð11Þm0m
k;v0L0;vL þ a2I

ð12Þm0m
k;v0L0;vL

� �

� hkm0L0jjX2jjkmLia2I
ð22Þm0m
k;v0L0;vL ð18Þ
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where ~Qq are the contravariant cyclic components of Q and

I
ðknÞm0m
k;v0L0;vL denote the following integrals,

I
ðknÞm0m
k;v0L0;vL ¼

Z
dRR2

Z
drr2

Z
dc sinðcÞukv0L0

m0

� ðR; r; cÞR2�nrndn
k0ðcÞukvL

m ðR; r; cÞ: ð19Þ

Equations (14–18), after the appropriate changes of vari-

ables in Eqs. (14) and (19) can be used with any alternative

choice of the arguments of the radial amplitudes u in the

expansion Eq. (12), e.g. the variables jRk � Rk0 j; k\k0 or

their linear combinations [25], but need be reworked for

alternative basis sets in the space of functions of the

angular variables, such as the expansion in bi-harmonics of

Refs. [6, 27].

The quadrupole term DHQ ¼ �ð1=3ÞHC � QðRCÞ in the

expansion Eq. (6) couples, in the general case, states with

different values of the orbital momentum L and its pro-

jection M and shifts the energy levels of the three-body

states by amounts that depend on M.

Previous studies of the effects of external magnetic

fields [10, 11] had demonstrated the advantages of con-

sidering the various perturbations to the dominating Cou-

lomb interactions due to relativistic effects, particle spin

and external fields on the same footing. An efficient

implementation of these calculations in first order of per-

turbation theory is the use of an ‘‘effective Hamiltonian’’

Heff. We remind that the ‘‘effective spin Hamiltonian’’ of

an atomic system is the projection of the spin interaction

operator on the finite dimensional space of eigenstates of

the non-relativistic Hamiltonian of the system with definite

values of the orbital angular momentum and the remaining

non-relativistic quantum numbers, in which couplings to

different L are neglected.

We therefore include the effects of the quadrupole

interaction DHQ in the form of an additional term VQ in the

effective spin Hamiltonian Heff
hfs, introduced in [28] (deno-

ted by Heff there) in the calculation of the hyperfine

structure and completed to Heff
tot = Heff

hfs ? Vmag by terms

Vmag that describe the Zeeman shifts in [10, 11]. That is, we

set

VQðv; LÞ ¼ E14ðv; LÞQðRCÞ � ðL� LÞð2Þ;
HtotþQ

eff ðv; LÞ ¼ Hhfs
eff ðv; LÞ þ Vmagðv; LÞ þ VQðv; LÞ; ð20Þ

where (L�L)(2) is the tensor square of the orbital

momentum operator L—the only irreducible tensor oper-

ator of rank 2 acting in the space of states with definite

value of L. In Eq. (20), we have shown explicitly the

dependence of the effective Hamiltonian and its various

terms on the quantum numbers (v, L) of the non-relativistic

state to which they refer. From the next section on, in order

to simplify the notations we shall omit these quantum

numbers while keeping in mind the dependence on them.

The advantage of using the effective Hamiltonian is that

the integrals of the 3-body wave functions of Eqs. (28) or

(12) over R, r and c are encoded in the single constant E14,

so that the electric quadrupole shift of each individual

quantum state is calculated by standard angular momentum

algebra.

The expression for E14 reads:

E14ðv; LÞ ¼ �
1

3

hkvLjj ~HCjjkvLi
hLjjðL� LÞð2ÞjjLi

;

hLjjðL� LÞð2ÞjjLi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cð2Lþ 4Þ

4!Cð2L� 1Þ

s

:

ð21Þ

3 Born–Oppenheimer approximation

The gradient of the electric field acting on an ion in a

tightly confining quadrupole ion trap is of the order of

108 V/m2 and in what follows it will be shown that this

magnitude gives rise to energy level shifts not exceeding

100 Hz, significantly below the Zeeman shifts of most

levels for the typical fields that are applied in ion traps [9–

11]. This situation softens the requirements to the numer-

ical and theoretical accuracy of the treatment and allows

for using the Born–Oppenheimer wave functions instead of

the highly accurate variational wave functions of Ref. [29].

The Born–Oppenheimer approximation assumes that

instead of RC the molecular ion’s ‘‘motion as a whole’’ is

associated with the nuclear center-of-mass position vector

RB = (m1R1 ? m2R2)/m12 and its conjugate momentum

PB. HNR then takes the form

HNR ¼ HB þ DHB þ H;

HB ¼
P2

B

2m12

;

DHB ¼
2

m12

ðPB � pÞ;

ð22Þ

where H is that part that depends only on the internal

degrees of freedom. Separation of external and internal

degrees of freedom occurs by neglecting the cross term

DHB. This neglect limits a priori the fractional in accuracy

of the results to the magnitude of the omitted terms of order

O(4 m3/m12)*10-3. The inaccuracy due to the replace-

ment of mt in the denominator of HC in Eq. (2) by m12 in

HB is smaller.

In order to further separate the degrees of freedom of the

electron from the relative motion of the nuclei, we expand

the wave function of the eigenstates of H in the basis of

eigenfunctions of the electronic Hamiltonian:

wkvLMðR; rÞ ¼
X

c

wðNÞkvLM
c ðRÞwðeÞc ðr; RÞ ; ð23Þ
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ðHðeÞ � EcðRÞÞwðeÞc ðr; RÞ ¼ 0 ; ð24Þ

H ¼ HðNÞ þ HðeÞ; HðNÞ ¼ 1

2m1;2
P2 þ e2

R
;

HðeÞ ¼ 1

2m3;12

p2 �
X

k¼1;2

e2

jR3 � Rkj
: ð25Þ

We solved Eq. (24) numerically using its separability in the

prolate spheroidal coordinates

n ¼ 1

R
ðjR3 � R1j þ jR3 � R2jÞ;

g ¼ 1

R
ðjR3 � R1j � jR3 � R2jÞ ; ð26Þ

Their definition ranges are 1 B n\?, -1 \ g\ 1.

These coordinates are related to r and c of Eq. (12) by

means of

r ¼ R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1

m12

nþ g
2

� �2

þ m2

m12

n� g
2

� �2

�m1m2

m2
12

s

;

cos c ¼ R

2r
ngþ m1 � m2

m12

� �
: ð27Þ

We reproduced the results for Ek(R) of Ref. [30].

The calculations of the dipole polarizabilities of the

lower rovibrational states of HD? in Ref. [15] have shown

(by comparison with the high precision variational results

of Ref. [31]) that a fractional error of 10-3 in the compu-

tation of the energy values and of the dipole moments may

be reached by keeping only the first term c = (1sr) in the

expansion Eq. (24) and by neglecting the diagonal cor-

rection term hwðeÞ1srjP2jwðeÞ1sri. We therefore adopted this

approximation in the evaluation of the quadrupole shift as

well and took the wave functions of ‘‘normal’’ parity

k = ?1 (the index k is omitted in what follows) in the

form:

wvLMðR; rÞ ¼ R�1vvL
1srðRÞYLMðU; hÞwðeÞ1srðn; g; RÞ ; ð28Þ

with normalization conditions

R3

8

Z Z
dndgðn2 � g2ÞwðeÞ1srðn; g; RÞ2 ¼ 1 ; ð29Þ

Z1

0

dRvvL
1srðRÞ

2 ¼ 1: ð30Þ

We calculated numerically the v1sr
vL (R) as solutions of the

radial Schrödinger equation.

One could then obtain E14 by using Eq. (21) and eval-

uating the integrals in Eq. (19) with the wave functions of

Eq. (28). Instead, we re-expand DH of Eq. (6) around the

‘‘Born–Oppenheimer central point’’ RB so that the quad-

rupole interaction term takes the form

DHQ ¼ �ð1=3ÞHB � QðRBÞ: ð31Þ

The tensor HB differs from HC of Eq. (10) by terms of

order O(a1)*10-4 or smaller:

ðHBÞij ¼ e
3

2
a0 RiRj �

dij

3
R2

� �
� rirj �

dij

3
r2

� �� �
:

ð32Þ

and the error due to replacing HC by HB is within the

adopted accuracy limits. Note that a0 ¼ 1
2

for the homo-

nuclear ions H2
?, D2

?, T2
? but differs for the heteronuclear

ones.

Similar to Eq. (14), we expand the cyclic components
~HB over the set of irreducible tensor operators Xi, but keep

only the terms involving X0 since the matrix elements of Xi,

i C 1 vanish in the r-term approximation with

m0 = m = 0, adopted in Eq. (28):

~HB � e a0R2 � r2d2
00ðcÞ

� �
X0: ð33Þ

In order to facilitate comparison with the results of earlier

papers on the subject, instead of using the more general

notations of Eq. (19), we put the reduced matrix elements

of ~HB in the form:

hkv0L0jj ~HBjjkvLi � hk0L0jjX0jjk0LiMv0L0;vL;

Mv0L0;vL ¼ e

Z1

0

dRvv0L0

1srðRÞMðRÞvvL
1srðRÞ;

MðRÞ ¼ R2 1

2
� m1m2

m2
12

� �
þ FðRÞ;

FðRÞ ¼ R2 1

2
þ R3

8

Z
dndgðn2 � g2Þ

�

� 1

8
ðn2 þ g2 � 3� 3n2g2Þ wðeÞ1srðn; g; RÞ

� �2

Þ:

ð34Þ

We have made use of the symmetry of the wave function

squared w1sr
(e) 2 with respect to g! �g, so that only terms

with even powers of g contribute.

The function M(R) may also be expressed as MðRÞ ¼
R2ðm2

1 þ m2
2Þ=m2

12 þ hz2i þ hx2i (the angular brackets refer

to the averaging over the electronic coordinates with w1sr
(e) ).

Note that F(R) is independent of the molecular species and

M(R) is the same for all homonuclear species:

MðRÞjm1¼m2
¼ R2=4þ FðRÞ. The function F(R), which

gives the correction to the asymptotic behavior of M(R),

was introduced in [17]. In Fig. 1 we plot it.

3.1 Comparison with previous work

The values of M(R) for homonuclear ions, calculated with

our numerical values of the function F(R), agree with the
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results of Refs. [16] (Table 1 therein), [21] (Table 2

therein) and [32]. Also, the values of the function F(R) are

essentially identical to those extracted from Ref. [17] in

their Table II.

For H2
?, our value M00;00 ¼ 1:63775 a.u. is in agreement

with Ref. [20] (Table 1 therein) and the numerically less

accurate, older value of Ref. [16] (Table 3 therein). Our

values M0L;0L; L ¼ 0; . . .10, agree within 0.001 atomic

units with the more accurate values of Ref. [21] (Table 3

therein) computed with the adiabatic potential.

Concerning HD? the only previous calculation known to

us is Ref. [22] (Table 1). There, the definition of the

quadrupole moment is 1
2
ðR2 þ r2 � 3z2Þ

	 

, the same as for

the homonuclear ions. Thus, the expression M(R)|BD =

R2m1m2/m12
2 ? F(R) was used, which involves a different

dependence on the nuclear masses as compared with

our Eq. (34). Our definition of the quadrupole moment for

HD? is h HBð Þzzi ¼ ~HB

� �
0

D E
¼ 1

2
ð2a0R2 þ r2 � 3z2Þ

	 

:

Accordingly, our value of M00;00 ¼ 1:7409 a.u. differs from

M00;00jBD ¼ 1:505729 a.u. (table I in Ref. [22]). However,

if we compute M(R)|BD with the functions v1sr
00 (R) calcu-

lated in the present work, we obtain a similar result,

M
0
00;00 ¼ 1:5042 a.u., which clearly indicates that the dis-

crepancy is due to the different analytical expressions used,

not to different wave functions.

3.2 The quadrupole coupling coefficients

in the effective Hamiltonian E14

Equations (21, 34) lead to the following expression of the

quadrupole coupling coefficients E14 of the effective

Hamiltonian for the rovibrational state (v, L) in the adopted

approximation:

E14 ¼ e

ffiffiffi
6
p

3ð2L� 1Þð2Lþ 3ÞMvL;vL: ð35Þ

Tables 1, 2 and 3 list the values of E14 for 99 rovibrational

states of HD?, H2
? and D2

?, respectively, calculated using

Eq. (35). Note the slow increase of E14 with v and the

stronger decrease with L. The entries with L = 0 are not of

relevance in the following, but are given for completeness

since they are proportional to the normalized quadrupole

moment of the L = 0 states, Mv0;v0 ¼ �9E14ðv; 0Þ=
ffiffiffi
6
p

.

4 The quadrupole shift in HD1

4.1 Generalities

We denote by EvLnJzðB;QÞ the energy of the hyperfine state

jvLnJzðB;QÞi of HD? in a magnetic field B and in an

electric field gradient Q. Because of the spin interactions

these states are not in general eigenstates of the operators

F2, S2 and J2 and the quantum numbers F, S and J associ-

ated with them are not exact quantum numbers, but for

Nuclear distance R aB

F
R

a B
2

0 5 10 15 20 25
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Fig. 1 Plot of the function F(R) (in atomic units)

Table 1 Numerical values of the coefficients E14 of the effective Hamiltonian, Eq. (20), for some rovibrational states (v, L) of HD?, with units

MHz m2/GV

L v = 0 1 2 3 4 5 6 7 8

0 -0.3208(-3) -0.3607(-3) -0.4032(-3) -0.4486(-3) -0.4972(-3) -0.5494(-3) -0.6056(-3) -0.6664(-3) -0.7324(-3)

1 0.1928(-3) 0.2168(-3) 0.2423(-3) 0.2696(-3) 0.2988(-3) 0.3302(-3) 0.3640(-3) 0.4005(-3) 0.4402(-3)

2 0.4609(-4) 0.5180(-4) 0.5790(-4) 0.6441(-4) 0.7139(-4) 0.7888(-4) 0.8693(-4) 0.9565(-4) 0.1051(-3)

3 0.2163(-4) 0.2430(-4) 0.2716(-4) 0.3021(-4) 0.3348(-4) 0.3699(-4) 0.4077(-4) 0.4485(-4) 0.4930(-4)

4 0.1273(-4) 0.1430(-4) 0.1598(-4) 0.1777(-4) 0.1969(-4) 0.2176(-4) 0.2398(-4) 0.2638(-4) 0.2900(-4)

5 0.8454(-5) 0.9495(-5) 0.1061(-4) 0.1179(-4) 0.1307(-4) 0.1443(-4) 0.1591(-4) 0.1750(-4) 0.1924(-4)

6 0.6059(-5) 0.6803(-5) 0.7596(-5) 0.8446(-5) 0.9355(-5) 0.1033(-4) 0.1139(-4) 0.1253(-4) 0.1377(-4)

7 0.4580(-5) 0.5140(-5) 0.5738(-5) 0.6377(-5) 0.7062(-5) 0.7799(-5) 0.8595(-5) 0.9456(-5) 0.1040(-4)

8 0.3601(-5) 0.4040(-5) 0.4508(-5) 0.5009(-5) 0.5546(-5) 0.6124(-5) 0.6747(-5) 0.7424(-5) 0.8164(-5)

9 0.2920(-5) 0.3273(-5) 0.3651(-5) 0.4056(-5) 0.4490(-5) 0.4957(-5) 0.5461(-5) 0.6010(-5) 0.6609(-5)

10 0.2426(-5) 0.2718(-5) 0.3031(-5) 0.3365(-5) 0.3724(-5) 0.4111(-5) 0.4530(-5) 0.4985(-5) 0.5483(-5)

The notation a(-b) stands for a 9 10-b. In order to convert the values to atomic units (e aB
2), multiply by 1476.87
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weak fields may be considered as approximate quantum

numbers. For given values of L and Jz, the number N(L, Jz) of

eigenstates jvLnJzðB;QÞi is equal to the number of the

combinations of quantum numbers (F, S, J) in the spin

coupling scheme of Refs. [10, 11] allowed by angular

momentum algebra. We therefore use the index

n ¼ 1; 2; . . .;NðL; JzÞ, which enumerates the possible com-

binations of (F, S, J), to label the spin content of

jvLnJzðB;QÞi and associate each value of n with the set of

values of the approximate quantum numbers:

n,(Fn, Sn, Jn). Note that J is exact in the absence of external

fields, and Jz is exact if the axial symmetry is conserved.

We consider in the following three levels of perturbation

calculations, which are all restricted to a given level (v, L):

(1) diagonalizing the whole effective Hamiltonian Heff
tot?Q

between angular momentum basis states; (2) diagonalizing

the matrix of the quadrupole interaction VQ between

eigenstates of the effective Hamiltonian Heff
tot that includes

magnetic, but not the quadrupole interaction; (3) comput-

ing the expectation value of the quadrupole interaction. We

then show that the latter approximation is sufficient.

4.2 Diagonalization of the effective Hamiltonian

in a state (v, L)

The energies EvLnJzðB;QÞ are defined as eigenvalues of the

matrix of the effective spin Hamiltonian Heff
tot?Q of Eq. (20) in

the subspace of states with fixed values of v and L. This matrix

has dimension (2Sp ? 1)(2Sd ? 1)(2Se ? 1)(2L ? 1)

squared (Sp, Sd, Se being the spins of the three particles), i.e.

12(2L ? 1) 9 12(2L ? 1). The matrix elements of the spin

interaction operators (the first 9 terms of Heff
tot?Q) were com-

puted in [28] and those of the interactions with external mag-

netic field Vmag (next 4 terms) in [10, 11]. With account of Eqs.

(34) and (35), the matrix elements of the projection VQ of DHQ

on the subspace of a state with fixed values of v and L have the

form:

vLF0S0J0J 0zjVQjvLFSJJz

	 

¼E14dS0SdF0Fð�1ÞJ

0þSþL

�hLjjðL�LÞð2ÞjjLi�
ffiffiffiffiffiffiffiffiffiffiffiffi
2Jþ1
p L 2 L

J 0 S J

� �X

q

~QqðRBÞC
J0J0z
JJz;2q:

ð36Þ

Note that they vanish for L = 0 levels.

4.3 Diagonalization of the electric quadrupole

Hamiltonian in the space of Zeeman hyperfine

states

Comparison of the values of E14 with the values of the

coefficients Ek; k ¼ 10; . . .; 13 of the effective Hamiltonian

for the Zeeman effect [10, 11] shows that, for the electric

field gradients and magnetic fields of interest here, the

quadrupole shift DE
vLnJz

Q ¼ EvLnJzðB;QÞ � EvLnJzðB; 0Þ is, for

the majority of levels, much smaller than the Zeeman shift

EvLnJzðB; 0Þ � EvLnJzð0; 0Þ. Even the hyperfine states least

sensitive to magnetic fields, those with Jz = 0 (having only a

quadratic Zeeman shift), exhibit at 1 G a typical shift of a few

kHz or more, occasionally only tens of Hz, while the electric

quadrupole shift, in a 108 V/m2 gradient, is on the order of 100

Hz. Therefore, for sufficiently large magnetic fields the electric

quadrupole shift can conveniently be evaluated as a perturba-

tion to the Zeeman-shifted hyperfine energy levels by

diagonalizing the matrix of VQ, Eq. (20), in the basis of the

Zeeman-shifted hyperfine states jvLnJzðB; 0Þi, calculated as

eigenvectors of the spin and magnetic interaction part HtotþQ
eff ¼

Hhfs
eff þ Vmag of the effective Hamiltonian of Eq. (20):

vLn0J0zðB; 0ÞjVQjvLnJzðB; 0Þ
	 


¼ E14hLjjðL� LÞð2ÞjjLi
�
X

q

~QqðRBÞ
X

FSJ0J

ð�1ÞSþJ0þL
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2J þ 1
p

�
L 2 L

J0 S J

� �
C

J0J0z
JJz;2qb

vLn0J0z
FSJ0 ðBÞb

vLnJz

FSJ ðBÞ; ð37Þ

where bvLnJz

FSJ ðBÞ are the expansion coefficients of the

hyperfine states in the presence of a magnetic field B in the

field-free basis set jvLFSJJzif g [10, 11]:

jvLnJzðB; 0Þi ¼
X

F0S0J0
bvLnJz

F0S0J0 ðBÞjvLF0S0J0Jzi: ð38Þ

Note that in Eq. (38) there is no summation over the

angular momentum projection Jz, since it remains a good

quantum number in a homogeneous magnetic field. The

computational advantage of evaluating the electric quad-

rupole shift DE
vLnJz

Q by diagonalizing the matrix of VQ in

Eq. (37) instead of Heff
tot?Q is that no precision is lost in the

subtraction EvLnJzðB;QÞ � EvLnJzðB; 0Þ. Note again that the

matrix element in Eq. (37) vanishes for L = 0.

4.4 First-order perturbation theory

In first order of perturbation theory, the quadrupole shift is

given by the diagonal matrix element of VQ,

DE
vLnJz

Q;diag ¼ vLnJzðB; 0ÞjVQjvLnJzðB; 0Þ
	 


¼ E14
~Q0ðRBÞ vLnJzðB; 0ÞjðL� LÞð2Þ0 jvLnJzðB; 0Þ

D E

¼ E14hLjjðL� LÞð2ÞjjLi ~Q0ðRBÞ
�
X

FSJ0J

ð�1ÞSþJ0þL
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2J þ 1
p

C
J0Jz

JJz;20b
vLnJz

FSJ0 ðBÞb
vLnJz

FSJ ðBÞ

L 2 L

J0 S J

� �

ð39Þ

to which only the longitudinal component Qzz ¼ ~Q0ðRBÞ of

the electric field gradient contributes; since Qzz does not
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mix states with different values of Jz, Jz remains a good

quantum number in this case. The transversal components

that couple states with different values of Jz contribute in

second order of perturbation theory only; for the electric

and magnetic fields of interest, the second-order effects are

below 0.1 Hz and will be neglected in what follows.

We may rewrite the above equation in a simplified

notation,

DE
vLFSJJz

Q;diag ¼
ffiffiffi
3

2

r
E14ðv; LÞQzzhvLFSJJzjL2

z �
1

3
L2jvLFSJJzi:

ð40Þ

From the property of the 6-j symbols, we see that the shift

vanishes if L = 0. Furthermore, in the limit of zero

magnetic field B,

bvLnJz

FSJ ðBÞ ’ bvLnJz

FSJ ð0Þ ¼ dJJn
bvLðFnSnJnÞJz

FSJ ð0Þ: ð41Þ

The sum over J, J0 in Eq. (39) is then proportional to

L L 2

J J S0

� �
:

This 6-j symbol vanishes for J = Jn = 0 hyperfine levels.

Therefore, the shift nearly vanishes for such levels in the

limit of small magnetic field. Thus, for example, a transi-

tion ðv; L ¼ 0; n; JzÞ ! ðv0; L0; n0; J0z ¼ 0Þ such that Jn0 ¼ 0

is nearly free of quadrupole shift if the magnetic field is

small. Table 6 below contains such a transition.

4.5 Numerical example

We have performed numerical diagonalization of the effec-

tive Hamiltonian Eq. (20), including hyperfine coupling,

Zeeman interaction, and quadrupole interaction as described

in Sect. 4.2. For example, for the level (v = 0, L = 1) in

B = 1 G, and a purely longitudinal gradient

Q = Qzz = 108 V/m2 for a gradient with non-zero transver-

sal components Q ¼ ð ~Q�1 ¼ 100� 108; ~Q0 ¼ 108ÞV/m2,

and for ð ~Q�2 ¼ 100� 108; ~Q0 ¼ 108ÞV/m2 the largest rel-

ative difference between the ‘‘exact’’ quadrupole shift

DE
vLnJz

Q and the diagonal approximation DE
vLnJz

Q;diag, Eq. (39), is

9 9 10-4. The maximum absolute deviation is 9 9 10-5 Hz.

For concreteness, we have also studied the effect of reducing

the magnetic field from 1 G to 0.1 G for the (0,3), (3,4) and

(5,4) levels that support some of the metrologically interest-

ing transitions listed in Table 7. All Zeeman states exhibit

very small relative and very small absolute differences\0.06

Hz between the full diagonalization value (when ~Q�2 ¼
~Q�1 ¼ ~Q0 was set) and the expectation value results (which

takes only ~Q0 into account) also in 0.1 G, except for the Jz 6¼ 0

hyperfine Zeeman states of those two particular hyperfine

levels that also contain the particularly favourable Jz ¼ 0!T
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J0z ¼ 0 transition with -2.3 Hz Zeeman shift (Table 7). For

the J0z 6¼ 0 states the absolute difference increases from a

maximum of 0.4 Hz to a maximum of 2.5 Hz when B is

reduced to 0.1 G. For the J0z ¼ 0 states it does not exceed

0.25 Hz even in 0.1 G. These differences are related to the

small Zeeman splittings in these particular hyperfine levels.

However, these differences do not affect the discussion and

conclusions below. There is no difference if ~Q0 is the only

nonzero component. Thus, the diagonal approximation pro-

duces—within the adopted accuracy—essentially the same

numerical values of the quadrupole shift as the full diago-

nalization of the effective Hamiltonian, except in a few spe-

cial cases.

4.6 The shift of the stretched states

A special case is the stretched states. For any rovibrational

level (v, L), these are the two states with maximum total

angular momentum and projection,

jvLnsJzðB; 0Þi ¼ jv; L;F ¼ 1; S ¼ 2; J ¼ Lþ 2; Jz

¼ �ðLþ 2ÞðB; 0Þi;

introduced in Refs. [10, 11]. The expansion Eq. (38) of

these for any magnetic field strength contains only a single

non-zero coefficient, bvLnsJz¼�J
FSJ ðBÞ ¼ dF1dS2dJLþ2. Using

this, we obtain the simple expression for both stretched

states:

DE
vLnsJz¼�ðLþ2Þ
Q;diag ðBÞ ¼ Lð2L� 1Þffiffiffi

6
p E14Qzz: ð42Þ

The shift is equal for both stretched states and independent

of magnetic field strength.

5 Numerical results for HD1

5.1 Energy shifts

To illustrate the magnitude of the electric quadrupole shift,

we list in Table 4 the quadrupole shifts DE
vLnJz

Q;diagðBÞ of the

hyperfine energy levels of the initial and final states, ðv¼
0; L¼1Þ and ðv¼4; L¼2Þ, of a particular one-photon

rovibrational transition in HD?, discussed in detail in Ref.

[10, 11]. We choose a value Qzz = 0.1 GV m-2 which

could be present in a linear ion trap in which one HD? ion

and one Be?ion (for sympathetic cooling and quantum

logic interrogation) are located at a few lm distance.

Comparison with Table 2 of Refs. [10, 11] shows that the

quadrupole shift is typically orders of magnitude smaller

than the Zeeman shift. We emphasize that the quadrupole

shift of a given hyperfine state does depend on the mag-

netic field strength, although the dependence is weak forT
a
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the majority of the states (at the field value assumed in the

Table). It is useful to compare the values with those rele-

vant for a particular atomic ion used for atomic ion clocks:

the upper level of the octupole transition of 171Yb? has an

electric quadrupole shift of 2 Hz in the same gradient, at a

transition frequency of 642 THz [33].

5.2 Metrologically interesting transitions

Since the Zeeman shift is the dominant shift, we have

searched for transitions with small Zeeman shifts of the

transition frequencies when the magnetic field is moderate

(1 G) and report below their electric quadrupole shifts

DfQ ¼ ðDE
v0L0n0J0z
Q;diag ðBÞ � DE

vLnJz

Q;diagðBÞÞ=h: For simplicity, we

confined the search to the range v0 B 5,1 implying transi-

tion wavelengths larger than approximately 1.1 lm. The

search also found transitions with a small Zeeman shift at 1

G which is of spurious origin, the transition not actually

being weakly dependent on the magnetic field. Such tran-

sitions are not discussed further. This leaves essentially two

types of transitions (exceptions are mentioned below):

1. of the type Jz ¼ 0! J0z ¼ 0, characterized by a

quadratic Zeeman shift, and

2. transitions between stretched states. For any pair of

rovibrational levels (v, L), (v0, L0), these are the two

transitions

ðv; L;F ¼ 1; S ¼ 2; J ¼ Lþ 2; Jz ¼ JÞ ! ðv0; L0;F0 ¼ 1;

S0 ¼ 2; J0 ¼ L0 þ 2; J0z ¼ J0Þ;
ðv; L;F ¼ 1; S ¼ 2; J ¼ Lþ 2; Jz ¼ �JÞ ! ðv0; L0;F0 ¼ 1;

S0 ¼ 2; J0 ¼ L0 þ 2; J0z ¼ �J0Þ:

Their favorable metrological properties have been discussed

in Refs. [10, 11]. Basically, since the Zeeman shift of the

transition doublet is strictly linear, one has the possibility of

nulling the effect of the magnetic field by measuring both

transition frequencies (at any actual value of the magnetic

field) and then computing the average value. However, the

electric quadrupole shift is equal for both transitions in the

doublet, so no simple cancelation occurs.

5.3 Radio-frequency transitions

Magnetic (M1) hyperfine transitions within rovibrational

levels having rotational angular momentum L = 0 are free

of electric quadrupole shifts. Unfortunately, all M1 tran-

sitions in the rovibrational ground state (v = 0, L = 0),

which is well accessible experimentally, have compara-

tively large Zeeman shifts.

It may be of interest to measure hyperfine transitions in

levels with non-zero L, in order to test L-dependent con-

tributions to their frequencies. For this purpose, Table 5

shows a list of transitions between hyperfine states selected

with the criterium of less than 0.1 kHz Zeeman shift at 1 G

for individual transitions with quadratic Zeeman effect and

less than 0.6 kHz shift of the mean frequency of transition

pairs. We have included transitions with both small and

large RF frequency. No selection was performed with

respect to the electric quadrupole shift because the crite-

rium of small Zeeman shifts is regarded as more important

for experimental reasons. In the search, we confined our-

selves to the range v = 0, 1, and L = 0, 1, 2 in order to

limit the number of results.

We find a substantial number of Jz ¼ 0! J0z ¼ 0 tran-

sitions with Zeeman shifts of approximately 0.2–0.5 kHz at

1 G. A particularly low Zeeman shift (3 Hz in 1 G, 0.3 Hz

in 0.5 G) occurs for the 947.6 MHz hyperfine transition in

(v = 1, L = 1). This shift is closely quadratic in B only for

B \ 0.4 G. Since the electric quadrupole shift is also low,

-1.1 Hz, the transition is an interesting candidate for a

precision test of the hyperfine Hamiltonian. Note, however,

that this rovibrational level is an excited one, with finite

spontaneous lifetime (55 ms), giving rise to a natural

broadening of the transition of 6 Hz. Suppose that we can

measure an RF transition frequency with a resolution equal

to 1 % of the natural linewidth, i.e. 0.06 Hz. By measuring

the transition frequency as a function of the magnetic field,

it should be feasible to reduce the Zeeman effect uncer-

tainty to below 0.03 Hz.

Furthermore, a number of transition pairs exist

(including in v = 0) which have large but nearly opposite

Zeeman shifts, with a modest mean shift. Examples with

particularly low mean shift, from 2 to 80 Hz at 1 G, are

shown in the table. We note that due to the nearly complete

cancelation of the opposite shifts, the mean shifts should be

considered as indicative only. It should be noted that small

magnetic field gradients in the ion trap will cause inho-

mogeneous broadening of these RF transitions if spec-

troscopy is performed on ensembles of ions.

5.4 Rotational transitions

The two most easily accessible rotational transitions have

been considered in the search, namely the ones occurring in

the ground vibrational level v = 0 and having the lowest

transition frequencies: ðv ¼ 0; L ¼ 0Þ ! ð0; 1Þ at 1.3 THz

and ðv ¼ 0; L ¼ 1Þ ! ð0; 2Þ at 2.6 THz. Of these, the

1.3 THz transition has already been observed experimen-

tally [34]. Table 6 reports selected hyperfine components.

1 Values of the hyperfine Hamiltonian coefficients for v = 5 and

L = 5 levels were computed by V. Korobov and A. Bekbaev (private

communication). The rotational g-factors for these levels were

extrapolated from those of lower levels.
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For each of the two cases DJz ¼ 0 and DJz ¼ �1 those

transitions having lowest absolute Zeeman shift jDfBj in a

magnetic field of 1 G are listed. The transitions in ðv ¼
0; L ¼ 0Þ ! ð0; 1Þ have comparatively large Zeeman

shifts, leaving as the most interesting transitions the

‘‘stretched-state’’ doublet at 10.1 MHz, whose two com-

ponents have equal and opposite Zeeman shift and for

which the electric quadrupole shift is 7.9 Hz in a 108 V/m2

field gradient. The second rotational transition listed,

ðv ¼ 0; L ¼ 1Þ ! ð0; 2Þ, contains one hyperfine component

with a particularly small quadratic second-order Zeeman

shift (9 Hz at 1 G) and moderate electric quadrupole shift

(-13.5 Hz). By a careful measurement of the absolute

frequency shift of this transition as a function of applied

magnetic field, it appears possible to achieve an uncertainty

of the Zeeman shift equal to 0.2 % of the value at 1 G, or

approximately 0.04 Hz (2 9 10-14 relative to the absolute

transition frequency).

5.5 Rovibrational transitions

The search for favorable rovibrational transitions was limited

to transitions originating in v = 0, 1 and ending in v0 B 5. A

subset of transitions was selected according to the criterium

that their Zeeman shifts are less than 60 Hz for fields less than

1 G. The transitions orginating from v = 1 do not offer any

advantages compared to those orginating from the ground

vibrational state, and we limit the following discussion to the

latter. They are shown in Table 7. These are all Jz ¼ 0!
J0z ¼ 0 transitions. Two transitions (at -16.0 and 71.1 MHz)

have particularly low Zeeman shifts, 6 and -2 Hz at 1 G,

respectively. The small differential Zeeman shifts do not arise

Table 4 Quadrupole shifts DE
vLnJz

Q ðBÞ (in Hz) of the hyperfine states n = (FSJ) in the (v, L) = (4, 2) (top) and (0, 1) (bottom) rovibrational

states of HD?

State Jz

(FSJ) -4 -3 -2 -1 0 1 2 3 4

(124) 17.5 5.8 -3.3 -9.5 -12.4 -11.6 -6.7 2.9 17.5

17.5 0.4 -10.1 -14.0 -10.8 -0.4 17.5

(113) 17.5 0.2 -10.3 -14.0 -10.6 -0.2 17.5

(123) 2.9 -1.2 -3.3 -3.6 -2.1 1.1 5.9

8.3 -4.0 -8.7 -4.7 9.2

(102) 16.0 -8.0 -16.1 -8.0 16.1

(112) 9.6 -3.8 -9.7 -5.8 9.9

(122) -3.8 1.7 3.3 1.6 -2.8

(011) 5.4 -12.2 6.8

(111) 4.2 -10.9 6.5

(121) -5.9 10.9 -5.0

(120) 0.05

State Jz

(FSJ) -3 -2 -1 0 1 2 3

(123) 7.9 -4.9 -7.5 -5.6 -1.5 3.2 7.9

(012) 7.9 -3.4 -7.8 -4.5 7.9

(112) 7.9 -3.8 -7.9 -4.1 7.9

(122) -3.0 6.6 7.2 0.8 -11.1

(011) -4.5 7.8 -3.4

(101) 6.6 -13.1 6.6

(111) -2.5 4.6 -2.2

(121) 0.6 -0.9 0.4

(010) 0.02

(110) 0.02

The magnetic field is B = 1 G and the electric field gradient has its only non-vanishing component along the magnetic field

Q ¼ ~Q0 ¼ Qzz ¼ 0:1 GV m�2, with the only non-vanishing component along the magnetic field. The underlined numbers correspond to

hyperfine states with J = 0, for which the quadrupole shift vanishes in the limit of vanishing magnetic field. The bold numbers correspond to

stretched states
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from strong cancellation of large individual shifts, but from

cancellation of moderate shifts: For example, the -2.3 Hz

shift results from individual shifts of 58 Hz and 60 Hz, while

the 6.3 Hz shift from two individual shifts of approximately

6.2 kHz. The latter represents the largest relative cancellation

of all transitions in Table 7, and is still consistent with the

nonrelativistic approximations inherent in the Zeeman shift

calculation. If it is possible to minimize the magnetic field in

the trap, e.g. to 0.02 G, the quadratic Zeeman shift is reduced

by a factor^2500, to a fractional level of approx. 2 9 10-17

and 4 9 10-18, respectively. This is a negligible shift com-

pared to the other systematic effects discussed here.

The electric quadrupole shift of these transitions is approx.

-3 9 10-14 at the given gradient value.

Another transition worth noting is the ð1; 0; 1; 0Þ !
ð1; 0; 2; 0Þ transition in ðv ¼ 0; L ¼ 1Þ ! ð2; 2Þ (not shown

in Table 7), which has DfB ¼ 102:5 Hz at 1 G, and one of the

lowest fractional electric quadrupole shifts, DfQ ¼ 0:26 Hz

(2:3� 10�15). The relatively large Zeeman shift at 1 G would

be reduced to the 4� 10�16 level in a 0.02 G field.

If, however, the magnetic field is at the 1 G level, for

which the Zeeman shift is appreciable, one may determine

the shift precisely by measuring the frequency shift of the

transition as a function of applied magnetic field. Suppose

that the transition frequency can be measured with a

resolution equal to 1 % of the natural linewidth at each

magnetic field value, e.g., 0.14 Hz for a transition v ¼ 0!
v0 ¼ 3: The result of the Zeeman shift evaluation may then

reach an uncertainty of 0.04 Hz or 2 9 10-16 relative to the

absolute transition frequency of this overtone transition.

A second set of transitions are the stretched-state dou-

blets, tabulated in Table 8. For space reasons, we have not

included transitions to v0 = 5 or L0 = 5 levels. Their linear

Zeeman shift is approximately ±0.5 kHz/G. Suppose that

each transition frequency of a doublet can be measured with a

resolution equal to 1 % of the natural linewidth, e.g. 0.14 Hz

for the transition v ¼ 0! v ¼ 3: Then, the Zeeman effect

uncertainty of the mean of the doublet frequencies would be

0.2 Hz, or approximately 1 9 10-15 relative to the absolute

transition frequency. Repeating this for a set of magnetic

field values could reduce the error to 2 9 10-16. The electric

quadrupole shift of this particular transition is one order of

magnitude smaller than the typical shift of all other stret-

ched-state transitions, -0.3 Hz versus several Hz, or

2 9 10-15 relative to the absolute transition frequency.

5.6 Two-photon rovibrational transitions

Two-photon transitions (E2) are of interest since they can be

excited with suppression of first-order Doppler shift even

Table 5 Systematic shifts of selected radio-frequency M1 transitions ðv; L;F; S; J; JzÞ ! ðv; L;F0; S0; J0; J0zÞ (lower ! upper)

(v, L) F0 S0 J0 J0z F S J Jz f0 (1 G)

(MHz)

Rel.

int.

Df B (1 G)

(Hz)

Df Q (1 G)

(Hz)

ðDEQÞu
(Hz)

ðDEQÞl
(Hz)

DaðtÞ

(at.u.)

DaðlÞ

(at.u.)

(0, 1) 1 2 1 0 0 1 0 0 969 0.787 422 -1.0 -0.9 0.0 7.1 -14.1

(0, 2) 1 2 1 -1 1 0 2 -2 184.1 0.004 -1340044 -13.7 -3.6 10.1 33.1 -66.1

(0, 2) 1 2 1 1 1 0 2 2 186.8 0.003 1339960 -13.3 -3.1 10.1 33.1 -66.1

(0, 2) 1 2 2 0 1 1 3 0 97.3 0.029 -150 11.1 2.1 -9.0 -27.2 54.3

(0, 3) 1 1 4 -4 0 1 3 -3 906.7 0.201 -1082845 3.4 13.2 9.8 -4.0 7.9

(0, 3) 1 1 4 4 0 1 3 3 908.9 0.202 1082924 3.2 13.2 10.0 -4.0 7.9

(0, 3) 1 2 3 0 1 1 4 0 93.5 0.025 446 5.8 -3.6 -9.4 -7.0 14.1

(1, 1) 1 2 1 1 0 1 0 0 948.8 0.641 1192371 0.4 0.5 0.0 -4.3 8.6

(1, 1) 1 2 1 -1 0 1 1 0 950.5 0.113 -1192392 -8.1 0.7 8.8 64.0 -128

(1, 1) 1 2 1 0 0 1 0 0 947.6 0.784 3 -1.1 -1.1 0.0 8.6 -17.2

(1, 2) 1 2 2 0 1 1 3 0 95.9 0.028 -297 12.5 2.3 -10.1 -31.8 63.5

(1, 3) 1 2 3 2 1 1 4 3 92.1 0.026 -121796 -3.7 0.0 3.7 4.6 -9.3

(1, 3) 1 2 3 -2 1 1 4 -3 92.4 0.025 121798 -3.8 0.0 3.8 4.6 -9.3

(1, 3) 1 1 4 4 0 1 3 3 887 0.204 1078708 3.6 14.8 11.3 -4.6 9.2

(1, 3) 1 1 4 -4 0 1 3 -3 884.9 0.202 -1078713 3.8 14.8 11.0 -4.6 9.2

(1, 3) 1 2 3 0 1 1 4 0 92.2 0.025 315 6.6 -4.0 -10.6 -8.2 16.4

f0 is the transition frequency (excluding the quadrupole shift, including Zeeman shift for 1 Gauss). l, u refers to the lower and upper state,

respectively. The intensity of a transition is normalized to the strongest radio-frequency transition having the same value of jJz � J0zj and in the

same rovibrational level. DfB denotes the Zeeman shift of the transition frequency in a magnetic field of 1 G; DfQ ¼ ðDEQÞu � ðDEQÞl is the

electric quadrupole shift of the transition in a field gradient Qzz = 108 V/m2, while ðDEQÞl; ðDEQÞu are the electric quadrupole shifts of the lower

and upper states, respectively, here given in Hz. DaðtÞ ¼ ðaðtÞÞu � ðaðtÞÞl;DaðlÞ ¼ ðaðlÞÞu � ðaðlÞÞl are the transverse and longitudinal differential

electric polarizabilities between upper and lower state, respectively, in atomic units and in 1 G magnetic field. The near-zero quadrupole shift in

the state (v = 1, L = 3, F = 1, S = 2, J = 3, Jz = ±2) is a coincidence
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without strong spatial confinement of the ions. These transi-

tions were discussed for HD? in Ref. [13]. It was subsequently

shown in Ref. [9] that there exist two-photon transitions

without any Zeeman shift as well as stretched-state transitions.

Table 9 reports two-photon transitions between levels having

low values of L and L0. These are favorable from the experi-

mental point of view, since the number of two-photon transi-

tions arising from a pair of levels is reduced when the angular

momenta are small, which translates in a higher transition

strength per transition. Also, populating sufficiently strongly

the lower hyperfine state is simplified.

The most favorable transition from the point of view of the

systematic shifts due to magnetic field and electric field

gradient is the stretched-state transition of ðv ¼ 0; L ¼ 0Þ !
ðv0 ¼ 2; L0 ¼ 0Þ, as both effects are absent. The stretched-

state transition of ð0; 1Þ ! ð2; 1Þ is also advantageous. For

the latter, assuming the same criterium as above, the Zeeman

effect uncertainty would be 0.03 Hz, or approximately

3 9 10-16 relative to the absolute two-photon transition

frequency. The electric quadrupole shift is 2 Hz, nearly two

orders larger.

6 Discussion

6.1 Quadrupole shift measurement and cancelation

The previous section has shown that among the rovibrational

transitions having small Zeeman shifts (Tables 7, 8), the

electric quadrupole shifts range from absolute values of zero to

approximately 10 Hz, in a typical gradient of 108 V/m2. For

those transitions for which the shift is finite (i.e. excluding the

particular two-photon transitions), the relative values range

from ^1 9 10-15 to the largest values ^1 9 10-13 in frac-

tional units. It is useful to compare these magnitudes with the

value for atomic ions used in ion optical clocks. For example,

in the mercury ion, the shift is on the order of 10 Hz for the

same gradient strength, or 1 9 10-14 in relative units [35].

Although small for selected transitions of HD?, the

quadrupole shift can actually be determined and nulled.

The property that the electric quadrupole shift depends

only on the component of the gradient tensor in the

direction of the magnetic field allows for a determination

and cancelation of the quadrupole shift. The approach is

similar to one of the methods of quadrupole shift control

applied to atomic ions in ion optical clocks, introduced by

Itano [35].

Consider applying the magnetic field in turn along three

orthogonal spatial directions x, y, z, and measuring the cor-

responding transition frequencies fx, fy, fz, keeping the mag-

netic field strength constant. Since fi ¼ f0 þ ðDfQÞi;
i ¼ x; y; z, and the transition frequency shift is linear in the

gradient strength, ðDfQÞi ¼ pQii; where p = p(v, L, n, Jz,

v0, L0, n0, J0z; is the sensitivity of the particular transition

frequency, we have

fx ¼ f0 þ pQxx;

fy ¼ f0 þ pQyy;

fz ¼ f0 þ pQzz:

ð43Þ

Since the gradients satisfy the Laplace equation

Qxx ? Qyy ? Qzz = 0, we obtain

Table 6 Systematic shifts of selected rotational transitions in the vibrational ground state v = 0

(v0, L0)
upper

(v, L)

lower

F0 S0 J0 J0z F S J Jz Freq.(1 G)

(MHz)

Rel.

int.

Df B (1 G)

(Hz)

Df Q (1 G)

(Hz)

ðDEQÞu
(Hz)

ðDEQÞl
(Hz)

DaðtÞ

(at.u.)

DaðlÞ

(at.u.)

(0, 1) (0, 0) 0 1 1 0 0 1 1 0 1.7 0.002 -867 7.8 7.8 0 -449.7 -274.5

(0, 1) (0, 0) 1 2 1 0 1 2 2 0 -33.2 0.42 -2780 -0.9 -0.9 0 -384.2 -405.4

(0, 1) (0, 0) 0 1 2 0 0 1 1 0 -2.1 0.755 -2915 -7.8 -7.8 0 -332.9 -508.2

(0, 1) (0, 0) 0 1 0 0 0 1 1 0 6.1 0.377 3818 0.0 0.0 0 -391.3 -391.3

(0, 1) 0, 0) 1 0 1 0 1 0 0 0 -9.1 1 5050 -13.1 -13.1 0 -293.7 -586.5

(0, 1) (0, 0) 1 1 2 0 1 1 1 0 11.8 0.756 -6171 -7.9 -7.9 0 -332.8 -508.3

(0, 1) (0, 0) 1 2 3 ±3 1 2 2 ±2 10.1 1 ;558 7.9 7.9 0 -449.8 -274.3

(0, 2) (0, 1) 0 1 2 0 0 1 1 0 0.2 0.798 9 -13.5 -5.6 7.8 72.2 -144.4

(0, 2) (0, 1) 0 1 3 0 0 1 2 0 -2.1 0.957 792 -1.2 -9.0 -7.8 -36.3 72.7

(0, 2) (0, 1) 0 1 1 0 0 1 0 0 1.8 0.886 -840 -7.9 -7.9 0.0 19.3 -38.6

(0, 2) (0, 1) 1 2 4 ±4 1 2 3 ±3 12.9 1 ;558 3.4 11.3 7.9 30.9 -61.7

An entry having two signs for Jz and J0z indicates the two transitions between stretched states. The frequency value is the spin-dependent

contribution to the total transition frequency f0. For the ð0; 0Þ ! ð0; 1Þ transition, f0 ^ 1.3 THz. For the ð0; 1Þ ! ð0; 2Þ transition,

f0 ^ 2.6 THz. The intensity of each transition is normalized to that of the strongest transition of the particular rotational transition having the

same jDJzj. Other notations are as in Table 5
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f0 ¼
1

3
ðfx þ fy þ fzÞ;

pQxx ¼
1

3
ð2fx � fy � fzÞ;

pQyy ¼
1

3
ð2fy � fx � fzÞ: ð44Þ

The unperturbed transition frequency f0 is calculated from

a simple average over three directions. The error in

determining it arises from (1) the uncertainty of each

measurement fx, fy, fz and (2) the inaccuracy in establishing

three perfectly orthogonal magnetic field directions and

thus obtaining a perfect cancelation of the quadrupole shift.

The first uncertainty may be estimated as previously by

the 1 % assumption, giving 0.14 Hz=
ffiffiffi
3
p

for rovibrational

transitions v ¼ 0! 3: The second uncertainty, in a preci-

sion experiment on the mercury ion clock, was less than

5 9 10-17 [36]. We may expect that it will eventually be

possible to achieve an equivalent uncertainty of this type

also for HD?, that is, in the range between 5 9 10-18 and

5 9 10-16, depending on the transition (rescaling by the

sensitivity of HD? compared to Hg?). Then, the electric

quadrupole shift nulling uncertainty for all considered E1

rovibrational transitions will be dominated by the type-(i)-

uncertainty. With the 1 % criterium used here, this uncer-

tainty would be approximately 0.5 to 1 9 10-15, limited by

the natural lifetime of the upper level.

Note that since p is known, the gradient strengths can

also be determined experimentally, via Eq. (44).

6.2 Other systematic effects

The discussion has so far concentrated on the electric

quadrupole shift and the Zeeman shift in a time-indepen-

dent (d.c.) magnetic field. Other systematic effects affect-

ing transition frequencies of trapped ions are the second-

order Doppler shift, the Zeeman shift due to a.c. magnetic

fields of the trap, the light shifts, the black-body radiation

shift, and the quadratic Stark shift due to stray electric

fields of the trap. We comment only on the latter two, since

we believe that the others are negligible, with the possible

exception of the light shift in case of two-photon transi-

tions. The black-body radiation shift at 300 K is of order

1 9 10-16 for the transitions discussed here [14]. By an

accurate determination of the environment temperature or

Table 7 Selected rovibrational transitions with small quadratic Zeeman shifts at 1 G

(v0, L0)
upper

(v, L)

lower

F0 S0 J0 J0z F S J Jz freq.(1 G)

(MHz)

rel.

int.

Df B (1 G)

(Hz)

Df Q (1 G)

(Hz)

ðDEQÞu
(Hz)

ðDEQÞl
(Hz)

DaðtÞ

(at.u.)

DaðlÞ

(at.u.)

(1, 5) (0, 4) 0 1 5 0 0 1 4 0 16.8 0.97 29.5 -1.6 -10.5 -8.8 -0.5 3.4

(1, 5) (0, 4) 1 2 5 0 1 2 4 0 -3.1 0.9 -57.3 -2.3 -8.5 -6.2 0.4 1.6

(2, 4) (0, 3) 0 1 4 0 0 1 3 0 31.8 0.96 24.0 -3.1 -11.1 -7.9 0.5 4.0

(2, 4) (0, 3) 0 1 5 0 0 1 4 0 30.7 0.99 31.7 -2.7 -12.2 -9.5 -0.5 6.0

(2, 5) (0, 4) 0 1 5 0 0 1 4 0 32.0 0.97 -38.9 -2.9 -11.7 -8.8 1.1 2.8

(2, 5) (0, 4) 0 1 6 0 0 1 5 0 31.2 1 -39.6 -2.7 -12.4 -9.7 0.9 3.4

(3, 2) (0, 1) 1 1 3 0 1 1 2 0 -3.8 0.95 21.2 -4.7 -12.6 -7.9 -20.8 49.6

(3, 3) (0, 2) 0 1 4 0 0 1 3 0 44.7 0.98 -12.4 -4.2 -13.2 -9.0 -1.5 11.1

(3, 3) (0, 2) 1 0 3 0 1 0 2 0 -10.8 1 54.8 -3.8 -13.9 -10.1 -3.3 14.7

(3, 4) (0, 3) 1 2 4 0 1 2 3 0 -16.0 0.84 6.4 -5.0 -8.6 -3.6 5.2 -2.0

(3, 4) (0, 3) 1 1 5 0 1 1 4 0 -8.4 0.99 -11.2 -4.1 -13.5 -9.4 2.0 4.3

(3, 4) (0, 3) 0 1 4 0 0 1 3 0 45.9 0.96 -55.0 -4.4 -12.3 -7.9 2.9 2.5

(4, 2) (0, 1) 0 1 1 0 0 1 0 0 59.1 0.87 -17.7 -12.2 -12.2 0.0 39.8 -67.5

(4, 2) (0, 1) 0 1 3 0 0 1 2 0 57.5 0.94 -36.7 -6.1 -14.0 -7.8 -13.5 39.1

(4, 3) (0, 2) 0 1 3 0 0 1 2 0 58.9 0.91 -37.2 -6.7 -12.3 -5.6 7.7 -3.2

(4, 5) (0, 4) 1 1 4 0 1 1 3 0 -11.4 0.98 -21.1 -5.6 -14.8 -9.1 5.4 1.8

(4, 5) (0, 4) 1 2 3 0 1 2 2 0 -16.1 0.96 -29.0 -5.7 -13.9 -8.2 5.6 1.3

(4, 5) (0, 4) 1 2 7 0 1 2 6 0 -24.8 0.98 -30.8 -5.5 -14.8 -9.3 5.3 1.9

(4, 5) (0, 4) 1 1 5 0 1 1 4 0 -11.9 0.98 -34.3 -5.6 -14.7 -9.2 5.4 1.9

(4, 5) (0, 4) 0 1 4 0 0 1 3 0 59.0 0.99 -52.6 -5.6 -15.1 -9.5 5.3 1.9

(5, 4) (0, 3) 0 1 3 0 0 1 2 0 71.1 0.98 -2.3 -7.2 -16.3 -9.1 8.9 -0.2

(5, 5) (0, 4) 0 1 4 0 0 1 3 0 70.8 0.99 45.9 -7.2 -16.7 -9.5 8.3 1.4

For the ð0; 3Þ ! ð2; 4Þ transition, the absolute frequency f0 ^ 116 THz, for the ð0; 2Þ ! ð3; 3Þ transition, f0 ^ 166 THz, for the ð0; 1Þ ! ð4; 2Þ
transition, f0 ^ 214 THz, and for the ð0; 3Þ ! ð5; 4Þ transition, f0 ^ 261 THz. See caption of Table 6 for explanations
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Table 8 Rovibrational transitions between stretched hyperfine states

(v0, L0)
upper

(v, L)

lower

F0 S0 J0 J0z F S J Jz freq.(1 G)

(MHz)

rel.

int.

Df B (1 G)

(Hz)

Df Q (1 G)

(Hz)

ðDEQÞu
(Hz)

ðDEQÞl
(Hz)

DaðtÞ
(at.u.)

DaðlÞ

(at.u.)

(1, 0) (0, 1) 1 2 2 ± 2 1 2 3 ± 3 -17.0 1 ± 558.3 -7.9 0 7.9 517.2 341.7

(1, 1) (0, 0) 1 2 3 ± 3 1 2 2 ± 2 2.6 1 ; 553.7 8.9 8.8 0 -459.0 -253.8

(1, 1) (0, 2) 1 2 3 ± 3 1 2 4 ± 4 -20.4 1 ± 562.6 -2.4 8.8 11.3 -40.1 82.2

(1, 2) (0, 1) 1 2 4 ± 4 1 2 3 ± 3 4.8 1 ; 548.9 4.8 12.7 7.9 26.9 -51.7

(1, 2) (0, 3) 1 2 4 ± 4 1 2 5 ± 5 -21.6 1 ± 566.6 -0.6 12.7 13.2 -15.6 33.4

(1, 3) (0, 2) 1 2 5 ± 5 1 2 4 ± 4 4.6 1 ; 543.8 3.6 14.9 11.3 9.8 -17.4

(1, 3) (0, 4) 1 2 5 ± 5 1 2 6 ± 6 -22.3 1 ± 570.5 0.3 14.9 14.6 -7.6 17.3

(1, 4) (0, 3) 1 2 6 ± 6 1 2 5 ± 5 3.8 1 ; 538.4 3.1 16.3 13.2 4.8 -7.3

(2, 0) (0, 1) 1 2 2 ± 2 1 2 3 ± 3 -23.5 1 ± 558.3 -7.9 0 7.9 595.2 419.7

(2, 1) (0, 0) 1 2 3 ± 3 1 2 2 ± 2 -4.4 1 ; 548.9 9.9 9.9 0 -469.6 -230.0

(2, 1) (0, 2) 1 2 3 ± 3 1 2 4 ± 4 -27.4 1 ± 567.4 -1.4 9.9 11.3 -50.6 106.0

(2, 2) (0, 1) 1 2 4 ± 4 1 2 3 ± 3 -2.9 1 ; 539.1 6.3 14.2 7.9 22.5 -40.1

(2, 2) (0, 3) 1 2 4 ± 4 1 2 5 ± 5 -29.3 1 ± 576.4 0.9 14.2 13.2 -20.1 44.9

(2, 3) (0, 2) 1 2 5 ± 5 1 2 4 ± 4 -3.7 1 ; 529.1 5.3 16.6 11.3 7.7 -10.5

(2, 3) (0, 4) 1 2 5 ± 5 1 2 6 ± 6 -30.6 1 ± 585.2 2.1 16.6 14.6 -9.8 24.2

(2, 4) (0, 3) 1 2 6 ± 6 1 2 5 ± 5 -5.2 1 ; 518.8 5.0 18.3 13.2 3.8 -2.6

(3, 0) (0, 1) 1 2 2 ± 2 1 2 3 ± 3 -29.5 1 ± 558.3 -7.9 0 7.9 685.9 510.4

(3, 1) (0, 0) 1 2 3 ± 3 1 2 2 ± 2 -10.9 1 ; 543.7 11.0 11.0 0 -481.8 -202.4

(3, 1) (0, 2) 1 2 3 ± 3 1 2 4 ± 4 -33.9 1 ± 572.6 -0.3 11.0 11.3 -62.9 133.6

(3, 2) (0, 1) 1 2 4 ± 4 1 2 3 ± 3 -10.1 1 ; 528.7 7.9 15.8 7.9 17.4 -26.7

(3, 2) (0, 3) 1 2 4 ± 4 1 2 5 ± 5 -36.5 1 ± 586.8 2.5 15.8 13.2 -25.2 58.4

(3, 3) (0, 2) 1 2 5 ± 5 1 2 4 ± 4 -11.6 1 ; 513.4 7.2 18.5 11.3 5.3 -2.4

(3, 3) (0, 4) 1 2 5 ± 5 1 2 6 ± 6 -38.5 1 ± 600.9 3.9 18.5 14.6 -12.1 32.2

(3, 4) (0, 3) 1 2 6 ± 6 1 2 5 ± 5 -26.2 1 ; 497.7 7.1 20.3 13.2 2.7 2.8

(4, 0) (0, 1) 1 2 2 ± 2 1 2 3 ± 3 -35.2 1 ± 558.3 -7.9 0 7.9 791.8 616.3

(4, 1) (0, 0) 1 2 3 ± 3 1 2 2 ± 2 -17.0 1 ; 538.1 12.2 12.2 0 -496.0 -170.0

(4, 1) (0, 2) 1 2 3 ± 3 1 2 4 ± 4 -40.0 1 ± 578.1 0.9 12.2 11.3 -77.1 165.9

(4, 2) (0, 1) 1 2 4 ± 4 1 2 3 ± 3 -16.8 1 ; 517.6 9.6 17.5 7.9 11.5 -11

(4, 2) (0, 3) 1 2 4 ± 4 1 2 5 ± 5 -43.2 1 ± 597.9 4.2 17.5 13.2 -31.1 74.1

(4, 3) (0, 2) 1 2 5 ± 5 1 2 4 ± 4 -18.9 1 ; 496.6 9.2 20.5 11.3 2.6 7.0

(4, 3) (0, 4) 1 2 5 ± 5 1 2 6 ± 6 -45.8 1 ± 617.7 5.9 20.5 14.6 -14.8 41.6

(4, 4) (0, 3) 1 2 6 ± 6 1 2 5 ± 5 -21.7 1 ; 475.2 9.3 22.5 13.2 1.6 9.1

The double sign refers to the pair of transitions Jz = J? J0z = J0 and Jz = - J? J0z = - J0, which have opposite Zeeman shifts, but the same

electric quadrupole shift. The absolute transition frequencies are similar to those of Table 7. See caption of Table 6 for explanations

Table 9 Selected two-photon transitions with favorably low Zeeman shifts

(v0, L0)
upper

(v, L) lower F0 S0 J0 J0z F S J Jz Freq.(1 G)

(MHz)

Rel.

int.

Df B

(Hz)

Df Q (1

G) (Hz)

ðDEQÞu
(Hz)

ðDEQÞl
(Hz)

DaðtÞ

(at.u.)

DaðlÞ

(at.u.)

(2,0) (0,0) 1 2 2 ±2 1 2 2 ±2 -13.4 1 0 0 0 0 145.4 145.4

(2,2) (0,0) 1 2 4 ±4 1 2 2 ±2 7.2 1 ;1096 14.2 14.2 0 -427.3 -314.4

(2,1) (0,1) 1 2 3 ±3 1 2 3 ±3 -14.4 1 ±10 2.0 9.9 7.9 -19.8 44.3

Each line is a stretched-state doublet. The absolute transition frequencies are f0 ^ 112, 112, 115 THz, respectively. See caption of Table 6 for

explanations

The electric quadrupole moment 227

123



by use of a cryogenic ion trap the uncertainty of this shift

can be reduced further by at least one order.

The Stark frequency shift of a transition frequency is

given by DES ¼ �ðDaðlÞE2
z þ DaðtÞðE2

x þ E2
yÞÞ=2, where

Ex, Ey, Ez are the components of the electric field, and

DaðlÞ;DaðtÞ are, respectively, the differences of the longi-

tudinal and transverse polarizabilities between upper and

lower quantum state. The polarizabilities of the hyperfine

states of HD? have been calculated in Ref. [15] in the

absence of electric quadrupole interaction and for zero

magnetic field B, employing the Born–Oppenheimer

approximation. A summation method was used, where

excited electronic states were negelected. The method is

also applicable if the magnetic field is finite. The polariz-

abilities a of the hyperfine states typically lie in the range

of 1–100 atomic units, except for (v, L = 0) levels, where

they are 400 atomic units or larger. The work put into

evidence the strong variation of the polarizability between

different hyperfine state belonging to the same rovibra-

tional level. The hyperfine-state dependence arises in the

difference DaðlÞ � DaðtÞ, while the combination DaðlÞ þ
2DaðtÞ is independent of the upper and lower hyperfine

states. The (normalized) hyperfine-state dependence is

precisely obtained from the summation method, but the

magnitudes of the two polarizabilities are only accurate at a

level of a few at.u.2 A more accurate calculation is

described in [37], based on precise variational wave

functions, which include the contribution of excited elec-

tronic levels. We use the results of this latter calculation

here, which are reported in the tables above. The values

from the two calculation approaches differ by an amount

that scales with the change in vibrational quantum number

and reaches several atomic units for the transitions with

v ¼ 0! v0 ¼ 4. The dependence of DaðlÞ;DaðtÞ on the

magnetic field is very small (\0.1 at.u. between 0 and 1 G)

for most transitions in the tables; only for a few, it is on the

order 1 at.u.

According to the tables, many transitions exhibit a dif-

ferential polarizability on the order 10 at.u., which corre-

sponds to a frequency shift coefficient DES=hE2i ¼
1:2 mHz/(V/cm)2. We may compare this with the coeffi-

cients of atomic ions used in ion clocks. For example, it is

0.14 mHz/(V/cm)2 for Al? and 1 mHz/(V/cm)2 for the

octupole transition in 171Yb?. For the latter ion, the asso-

ciated fractional frequency uncertainty in current state-of-

the-art clocks is at the level of less than 10-17, i.e. less than

10 mHz absolute [33]. We assume for the following that it

should be possible to reach a similar absolute level,

10 mHz, also for HD?, if the transitions have a polariz-

ability of 10 a.u., and correspondingly more if the polar-

izability is higher.

6.3 Potential of promising transitions

For the rotational and radiofrequency transitions the rela-

tive uncertainties originating from the Stark shift will

generally be larger than for the rovibrational transitions due

to the smaller transition frequencies.

For the radiofrequency transitions, the differential polar-

izabilities vanish for L = 0 levels, since for these levels, the

state polarizabilities are equal for all hyperfine states. The

other transitions considered in Table 5 have small or mod-

erate differential polarizabilities. The 947.6 MHz radiofre-

quency transition in (1, 1) considered in Sect. 5.3 exhibits the

differential polarizabilities DaðtÞ ’ 9 at:u:;DaðlÞ ’ �17 at:u:

Following the argument given in the previous paragraph, the

corresponding uncertainty should be controllable at the

0.015 Hz level. The electric quadrupole shift should be

determinable to about the same level, see Sect. 6.1 and the

Zeeman shift inaccuracy was estimated at 0.03 Hz. Thus, in

this particular radiofrequency transition, the combined Zee-

man, quadrupole, and Stark systematic shift should be con-

trollable to approximately 0.05 Hz uncertainty, or 5 9 10-11

in relative terms.

For the rotational transitions in Table 6, we find polar-

izabilities ranging from intermediate to large. We estimate

that for the stretched-state transition of ð0; 0Þ ! ð0; 1Þ the

total systematic shift uncertainty could be 0.5 Hz

(5 9 10-13), whereas it could be 0.15 Hz for the 0.2 MHz

component of ð0; 1Þ ! ð0; 2Þ, or 5 9 10-14.

For the one-photon rovibrational transitions, Table 7

contains several with small differential polarizabilities. For

example, the –16 MHz hyperfine component of ð0; 3Þ !
ð3; 4Þ and the -71 MHz hyperfine component of

ð0; 3Þ ! ð5; 4Þ, both of which have negligible Zeeman shift

in a 0.02 G magnetic field, would have approximately

0.01 Hz Stark shift uncertainty, less than the one expected

from the quadrupole shift, (0.1 Hz). The total uncertainty,

(4–5) 9 10-16, would be dominated by the latter.

Among the stretched-state rovibrational one-photon

transitions in Table 8 there are several that have differen-

tial polarizabilities of 10 at.u. or less and therefore con-

tribute much less to the total uncertainty than the Zeeman

effect and the electric quadrupole effect. Here, too, a total

uncertainty of 5 9 10-16 appears possible.

Finally, for the two-photon transitions in Table 9, the dif-

ferential polarizabilities are moderate to large. For the

ð0; 0Þ ! ð2; 0Þ transition, the Stark effect is the only non-zero

systematic effect of the three types considered. Its contribution

2 In addition to the neglect of excited electronic states, the

calculations in Ref. [15] were performed taking into account only

intermediate states with 0 B v B 4. Therefore, the polarizabilities of

the v = 4, L = 2 level given in that paper deviate from the ‘‘correct’’

(within the chosen approximation) values by up to 1 at.u.
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to the transition frequency uncertainty would be 0.14 Hz

according to our assumptions, or 1 9 10-15 in relative terms.

A rough estimate of the light shift is 1 Hz (1 9 10-14). Thus,

this shift must be measured to the sub-10 % level in order to

reduce the total uncertainty to 1 9 10-15.

7 Conclusion

In this paper, we have developed an exact treatment of the

interaction of molecular hydrogen ions with a static electric

quadrupole field. This was simplified by applying the

Born–Oppenheimer approximation and we derived an

approximate effective Hamiltonian. We computed the

corresponding coupling coefficients E14 for the three non-

radioactive molecular hydrogen ion species. The quadru-

pole shift can be obtained with sufficient accuracy by

applying first-order perturbation theory. It is worth noting

that the computational scheme outlined here may be useful

in estimating similar effects in the spectroscopy of exotic

bound systems (such as muonic hydrogen molecular ions

[38, 39]) in the liquid or solid phase. The shift of energy

levels with zero rotational angular momentum vanishes.

Experimentally, the quadrupole shift can be nulled by

measuring the mean of the transition frequencies when the

magnetic field is aligned along three orthogonal directions.

This holds true for all molecular hydrogen ions and is due

to the smallness of the quadrupole interaction.

We evaluated the electric quadrupole shifts of a large

number of transitions in HD?, the hydrogen molecular ion

most intensively studied with high-resolution optical spec-

troscopy to date. We have considered those radio-frequency,

rotational, rovibrational one- and two-photon E1 transitions

that have low, vanishing, or opposite equal Zeeman shifts

and that are therefore of interest for precision spectroscopy.

The radio-frequency (and rotational) transitions, for which

the fractional uncertainty is higher than for the rovibrational

ones, are of interest for a test of the hyperfine Hamiltonian of

the molecule, while the the rovibrational transitions are of

interest for QED tests, fundamental constants metrology and

equivalence principle tests.

For the rovibrational transitions we find one-photon

transitions of very low Zeeman shift and two-photon tran-

sitions that are free of Zeeman shift and of quadrupole shift.

In the one-photon transitions of smallest quadrupole shift, it

is of fractional magnitude close to 1 9 10-15. However, if

the nulling procedure is applied, the uncertainty in the

residual quadrupole shift can be reduced to this level for

essentially all rovibrational transitions.

Combining these considerations with earlier analyses of

the blackbody shift and a recent precise evaluation of the

Stark shift, we conclude that for a few selected rovibrational

transitions of the HD? ion a fractional frequency uncertainty

at the 5 9 10-16 level should be achievable, under realistic

assumptions. This uncertainty is limited by the accuracy with

which the systematic shifts can be determined, which is

ultimately limited by the statistical uncertainty of measuring

the transition frequencies. Because of the relatively short

lifetimes of the vibrational levels, correspondingly long

integration times are therefore necessary to reduce the sta-

tistical uncertainty to the above level.

We have not computed the shifts of individual energy

levels of H2
? and D2

? in this paper. However, the numerical

similarity of their coefficients E14 to those of HD? indi-

cates that their quadrupole shifts will be similarly small. In

this context, their distinctive feature is the extremely small

natural linewidth of their transitions and the different spin

structure of the transitions. Because of the smaller line-

width of the homonuclear ions, the statistical uncertainty

can in principle be significantly lower than in HD?. Thus,

their potential for a molecular ion clock should be inves-

tigated in future studies.
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